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We investigate analytically and numerically the dynamical properties of critical Boolean networks with
power-law in-degree distributions and for two choices of update functions. When the exponent of the in-degree
distribution is larger than 3, we obtain results equivalent to those obtained for networks with fixed in-degree,
e.g., the number of the nonfrozen nodes scales as N2/3 with the system size N. When the exponent of the
distribution is between 2 and 3, the number of the nonfrozen nodes increases as Nx, with x being between 0 and
2/3 and depending on the exponent and on the cutoff of the in-degree distribution. These and ensuing results
explain various findings obtained earlier by computer simulations.
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Complex dynamical systems, where a large number of
units interact in a nontrivial way, are often modeled as net-
works. The units from which these networks are built can
show various types of intrinsic dynamics, including oscilla-
tions. Whenever the dynamics can be reduced to only two
possible states per node, a Boolean network is obtained.
Kauffman was the first to use random Boolean networks
�RBNs� to model the dynamics of genetic and protein net-
works �1,2�. Although Boolean models represent a strong
simplification of the far more complex reality, there exist
several examples where the modeling of a cellular network
by Boolean variables captures correctly the essential dynam-
ics of the system �3,4�.

RBNs are directed graphs where each node i has a Bool-
ean value �i� �0,1� and an update function f i which deter-
mines the new value in the next time step as function of the
state of those nodes that have a link to node i. Links and
functions are assigned at random, given certain constraints
concerning the number of inputs per node or the set of func-
tions. The update can be performed in different ways. We
consider here the usual case of synchronous update. After
some time, the dynamics reaches an attractor, i.e., a periodic
sequence of states. Depending on the parameters of the net-
work, the dynamics is either in the frozen phase, in the cha-
otic phase, or at the critical point between the two. In the
frozen phase, all apart from a small number of nodes assume
a constant value on the attractors, i.e., they are frozen. When
the state of a node is changed, on average less than one node
will be changed in the next time step and the size of a per-
turbation decreases with time. In the chaotic phase, a nonva-
nishing proportion of nodes keeps changing their state even
after a long time. The size of a perturbation increases with
time, since a change in the state of one node will lead on an
average to a change of the state of more than one node in the
next time step. Most studies of RBNs have focused on the
critical point, which is at the boundary between these two
phases, and where a perturbation of one node propagates on
an average to one other node. These studies deal mainly with
the �mean� number and size of attractors, motivated by
Kauffman’s original claim that biological networks are
poised at the critical point, and that attractors can be equated
with cell types. Despite of the long time since the introduc-
tion of the model, a full analytical understanding of critical
RBNs was obtained only recently �5–7�.

A key concept at understanding the dynamics of critical
RBNs is the classification of the nodes according to their
dynamical behavior on attractors into frozen, nonfrozen, and
relevant nodes �8�. Relevant nodes are those nodes that de-
termine the attractors, while the other nonfrozen nodes are
slaved to the dynamics of the relevant nodes; changing their
state does not change the attractor. A stochastic process that
gradually determines the frozen core starting from the nodes
that have a constant function was used in �6,9� to prove that
the number of nonfrozen nodes in critical RBN scales as
N2/3, and the number of relevant nodes as N1/3, with N being
the number of nodes in the network. In the limit of large
network size, scaling functions for the number of nonfrozen
and relevant nodes were calculated analytically. These results
are independent of the number of inputs per node and of the
particular choice of the set of update functions.

All studies mentioned so far assign k inputs to each node,
while the number of outputs is Poisson distributed, since
incoming links are connected at random to a node where
they originate. However, biological networks are known to
have a broad degree distribution, which is often well de-
scribed by a power law �see �10� and references therein�. For
this reason, several recent studies were devoted to Boolean
dynamics on scale-free networks. The majority of these stud-
ies use a scale-free in-degree distribution and a Poissonian
out-degree distribution, but other implementations can also
be found. Observations made in computer simulations are
that attractors are shorter and frozen nodes are more numer-
ous in critical scale-free networks compared to RBNs with a
fixed number of inputs, given the same total number of links
and of nodes �11,12�, and that attractors are sensitive to per-
turbations of highly connected nodes, but not of sparsely
connected nodes �13,12�. These and other �14,15� simulation
results are merely stated and are not embedded into an ana-
lytical framework. Analytical results obtained so far are lim-
ited to calculating the phase diagram using the annealed ap-
proximation �13,16,17�; only the work by Lee and Rieger
�18� went further by calculating the asymptotic Hamming
distance in the chaotic phase and extrapolating the results to
the critical point by using a finite-size scaling ansatz in com-
bination with the calculation of the size distribution of per-
turbed clusters.

In this paper, we will present an analytical calculation for
RBNs with scale-free input distributions at the critical point,
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obtaining scaling laws for the number of nonfrozen and rel-
evant nodes. Our results, which are confirmed by a numerical
evaluation, explain the above-mentioned findings of com-
puter simulations and convey a clear understanding of the
properties of attractors in these systems.

We consider critical networks that have an in-degree dis-
tribution P�k� that follows a power law, P�k�=Ak−� for
k�1. The normalization constant A depends on the mini-
mum and the maximum in-degrees. We fixed the minimum
in-degree to 2; the maximum in-degree depends on the net-
work size and the chosen implementation of the model �see
below�. We consider only the case ��2, where such a nor-
malization is possible. In the case 2���3, the second mo-
ment of the degree distribution diverges and it has been ar-
gued in �18� that this should change the dynamical
properties. The out-degree distribution is Poissonian with a
mean �k�=	kkP�k�, since the input connections are chosen at
random from all nodes, just as for RBNs with fixed k.

We investigated two ways of creating the input distribu-
tion. First, we assigned to each node i a number ki of inputs
that was drawn from the distribution P�k�, not allowing val-
ues ki larger than N or smaller than 2. The total number of
links and the largest value of ki differ in this case between
different networks. Second, we fixed the number of nodes
with k inputs exactly at the value NP�k� �rounded to the
nearest integer�, which gives a distribution P�k� that has a
cutoff at kmax
N1/�. In part of the above-mentioned studies,
networks with scale-free in-degree distributions were gener-
ated using a constraint that does not allow multiple connec-
tions between the same nodes or using a preferential-
attachment algorithm, however, all these are known to create
correlations between the degree of neighboring nodes �19�,
which in turn can affect the dynamics on these networks
�20�. In order to avoid such complications, we connect the
incoming links at random to any node without imposing any
constraints.

We also investigated several ways of assigning the Bool-
ean functions to the nodes. First, we chose biased functions
with a parameter p, assigning to each of the 2ki input con-
figurations the output 1 with a probability p and the output 0
with a probability 1− p. The value of p was chosen such that
the network is critical, i.e., that p=1 / �k� �13�. The main re-
sults did not depend on whether we chose the exact mean
�which can be different for each network� or the theoretical
mean 	kkP�k�. The second way of assigning the Boolean
functions is to take only constant and reversible functions.
There are two constant functions, which fix the value of a
node to either 0 or 1, irrespective of its input values. For
each value of k, there are 2 reversible functions, which are
defined by the condition that changing the value of one input
always changes the output. A node with a reversible function
becomes frozen only if all of its inputs are frozen. Such a
network is critical if the total number of nodes equals the
total number of inputs to nodes with reversible functions.
Links to nodes with constant functions have no effect and
can be omitted, so that the total number of links becomes
identical to the total number of nodes.

For pedagogical reasons, we will present in the following
our analytical calculations in the form appropriate for the
second, simpler case of only frozen and reversible functions.

The generalization to other cases is straightforward. At the
end of the calculations, we will outline how our calculations
can be modified to apply to the first case. In fact, from the
way in which the results follow from the calculations, it is
evident that our results are valid for other choices of the set
of update functions, as long as the set used for a node with k
inputs becomes identical to the set used for a node with k
−1 inputs when a randomly chosen input is frozen and as
long as the parameters are such that the network is critical.

We adjusted the method proposed in �6� in order to deter-
mine the size of the frozen core of critical networks with
scale-free input distributions. The frozen core is determined
starting from the nodes with constant functions and deter-
mining stepwise all those nodes that become frozen as a
consequence of their inputs becoming frozen. The main idea
of our method is to not specify the network in advance, but
to choose the connections within the network while deter-
mining the frozen core. To this purpose, we place all N nodes
of the network into “containers” Ck according to the number
k of inputs, as shown in Fig. 1. As mentioned above, inputs
to nodes with constant functions are omitted and these nodes
are therefore put into container C0. The largest container in-
dex is kmax=N or kmax
N1/�, depending on the method cho-
sen for creating the input distribution. The contents of the
containers change with time, since we remove stepwise all
those inputs of which we know that come from a frozen
node. The “time” we are defining here is not the real time for
the dynamics of the system, but it counts the steps of the
stochastic process that we use to determine the frozen core.
During one time step, we choose one node from the con-
tainer C0 and determine to which nodes this node is an input.
Since the inputs are picked at random, the chosen node is
connected to each input with probability 1 /N. These inputs
are removed and the corresponding nodes moved from con-
tainer Ck to container Ck−1 �or to a lower container, when
more than one connection is made to the same node, or pos-

(a)

(b)

(c)

C0 C1 C2 C3

FIG. 1. Illustration of the stochastic process used to determine
the frozen core. �a� Nodes are placed in containers according to the
number of inputs of which we do not yet already know for sure that
they are frozen. A node � from container C0 is chosen in order to
determine its effect on the other nodes. �b� This node becomes an
input to a node in container k with probability k /N. In this example,
it becomes the input to 2 nodes. �c� The frozen links are removed,
the two nodes are moved to the neighboring containers, and node �

is removed from the system.
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sibly to container 0 in the more general case where update
functions are included that can become frozen with only part
of their inputs frozen�. At the end of the time step, we re-
move the chosen node from the system and the number N of
nodes in the system is reduced by 1. Thus, at each time t, the
number �Ck� of nodes in container Ck is the number of nodes
that have k inputs that have not yet become frozen during the
process. In container C0 are those nodes of which we know
already that are frozen, but we have not yet determined to
which other nodes they are an input. We denote from now on
the total number of nodes in the system by Nini, which is
identical to N�t=0�. The number Nini−N�t� of nodes has been
removed from the system. They are those nodes for which
we have already determined that they are frozen and to
which other nodes they are an input.

The process ends when there are no nodes left in con-
tainer C0 or when all nodes are in container C0. In the latter
case, the entire network freezes and the dynamics of the
system runs to the same fixed point for all initial conditions.
In the first case, there is a set of nonfrozen nodes. In order to
determine the topology of the nonfrozen part of the network,
one can then fix the connections that have not yet been de-
termined by connecting the remaining inputs at random to
the remaining nodes.

Before showing the results of our computer simulations of
this process obtained for an ensemble of many networks, let
us first perform an analytical calculation in order to predict
the mean number of nodes remaining in the different con-
tainers at the end. We begin by evaluating the mean number
of nodes in container Ck at the moment where only the frac-
tion �=N /Nini nodes are left in the system. At this moment,
container Ck contains all nodes that had initially l�k inputs
and where l−k inputs have already become frozen. The prob-
ability that an input has not yet become frozen is identical to
�, since only the proportion � of nodes have not yet been
removed and since an input is connected to every node with
the same probability. Since container Cl contained initially
�Ninil

−� nodes, we have

�Ck� � Nini 	
l=k

kmax

l−��k�1 − ��l−k� l

k

 . �1�

For small �, nodes in container Ck originated in containers Cl
with l	k and we can therefore set l−k� l. Replacing the
sum with an integral, using e−x��1−x� and � l

k �� lk, we ob-
tain the approximate expression

�Ck� � Nini�
k�

k

kmax

lk−�e−l�dl �2�

When evaluating this integral, we have to consider three pos-
sible cases:

�i� The integral is independent of the cutoff because k
��−1. In this case we obtain

�Ck� 
 Nini�
k. �3�

�ii� k��−1 and �−1�kmax. In this case the exponential
function determines the cutoff to the integral and we obtain

�Ck� 
 Nini�
�−1. �4�

�iii� k��−1 and �−1�kmax. In this case kmax determines
the cutoff to the integral and we obtain

�Ck� 
 Nini�
kkmax

k−�+1. �5�

The stochastic process ends when no nodes are left in con-
tainer C0. On an average, the number of nodes in container
C0 is identical to the number of nonfrozen inputs minus the
number of nonfrozen nodes, since the network is critical. If
we neglect stochastic fluctuations during the process, the
number of nodes in container C0 becomes zero at the same
time when the number of nodes in container Ck with k�1
becomes zero, i.e., when �=0. However, stochastic fluctua-
tions will terminate the process earlier at the moment where
the fluctuations of the number of frozen nodes become of the
same order as the expected number of frozen nodes. The
variance of the number of frozen nodes is evaluated as fol-
lows. The probability that a given input has not yet become
frozen at the moment where N nodes are left in the system is
�. When � is small, the number of nonfrozen inputs is Pois-
son distributed, with the variance being identical to the
mean, which is proportional to Nini�. For small �, the vast
majority of nonfrozen inputs is found in container C1. Now a
node in container C1 would be in container C0 had its re-
maining input also becomes frozen during the process and it
follows that the variance of the number of frozen nodes is
also of the order Nini�. The typical fluctuations in the number
of frozen nodes are therefore of the order �Nini�=�N. Equat-
ing this number with the expected number of nodes in C0,
which in turn is of the same order as the expected number of
nodes in C2, we obtain the following condition for the end of
the stochastic process, where N is identical to the number of
nonfrozen nodes, Nnf:

�C2� 
 �Nnf = �Nini� . �6�

Depending on the value of � and on the dependence of
kmax on Nini, the number of nonfrozen nodes scales in a dif-
ferent way with Nini.

For ��3, the first of the three above cases applies to �C2�,
and solving condition �6� for Nnf, we obtain

Nnf 
 Nini
2/3 �7�

at the end of the stochastic process. This is the same result as
for a RBN with fixed k. Whenever the input distribution P�k�
has a finite second moment, the number of nonfrozen nodes
scales as Nini

2/3 and the number of nonfrozen nodes with two
nonfrozen inputs scales as Nini

1/3. The number of nonfrozen
nodes with more than two nonfrozen inputs depends on
whether k��−1, but it is in any case much smaller than the
number of nonfrozen nodes with two nonfrozen inputs and
we do not evaluate it here further.

When 2���3 and when kmax�Nini, the second case ap-
plies and we obtain using Eq. �4�

Nnf 
 Nini
�2�−4�/�2�−3�. �8�

For �=3, the exponent is 2/3, Nnf
Nini
2/3, and it decreases to

0 as � approaches 2.
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FIG. 2. Scaling collapse for the total number of nonfrozen nodes �first and third line� and for the number of nodes with two nonfrozen
inputs �second and fourth line�, for three different values of � and for the two different ways of choosing the input distributions, kmax
N
�first two lines� and kmax�N1/� �last two lines�. The function ai��� are the appropriate exponents obtained from Eqs. �8� and �9�, i.e.,
a1���= �2�−4� / �2�−3�, a2���=a1��� /2, a3���=2� / ��+6�, a4���=a3��� /2. Each data set is generated by averaging over 105 realizations.
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When 2���3 and when kmax�Nini
1/� �which is the case

when the input distribution is fixed�, the third case applies
and we obtain

Nnf 
 Nini
2�/��+6�. �9�

These results, Eqs. �6�–�9�, are also valid for other distri-
butions of Boolean functions which are tuned to the critical
point as long as the set used for a node with k inputs be-
comes identical to the set of functions �including their
weights� used for a node with k−1 inputs when a randomly
chosen input is frozen. For instance, when biased Boolean
functions are chosen, there is a probability pf

k= p2k
+ �1− p�2k

that a node with l�k inputs becomes frozen when l−k inputs
are frozen. Therefore the expression �2� for �Ck� obtains an
additional factor 1− pf

k. This factor is never close to 0 and
therefore does not change the scaling behavior of the inte-
gral.

Our computer simulations confirm all these analytical
considerations. We performed simulations for both cases de-
scribed above, with biased functions, and with only constant
and reversible functions. Since the curves look similar in
both cases and since the quality of the data collapse is
equally good in both cases, we show in Fig. 2 only the re-
sults obtained for the case of constant and reversible func-
tions, for both ways of choosing the input distributions. The
excellent quality of the data collapses, which are based on
the power laws predicted by the theory, confirms our analyti-
cal calculations.

Our results have a variety of implications. First, they
show that many properties obtained for critical networks
with a fixed number of inputs apply also to networks with a
scale-free in-degree distribution once the frozen nodes have
been removed. In particular, the number of nonfrozen nodes
with more than one nonfrozen input scales as the square root
of the number of nonfrozen nodes. Only the dependence of
the number of nonfrozen nodes on the total number of nodes

is changed when �� �2,3�. We can therefore take over the
results obtained in �6� based on these properties of the non-
frozen nodes. It follows in particular that the number of rel-
evant nodes in networks with a scale-free input distribution
scales as the square root of the number of nonfrozen nodes
and that the number of relevant components is of the order of
log Nini, with all but a limited number of relevant compo-
nents being simple loops. It therefore follows again that the
mean number and length of attractors diverge faster than any
power law with the network size. This explains the finding in
�13� that the state-space structure of critical RBNs with fixed
k and with a power-law input distribution is similar. Second,
the number of nonfrozen nodes decreases with decreasing
�� �2,3� because the exponent becomes smaller. This ex-
plains why several authors have seen more frozen nodes and
shorter attractors in scale-free networks compared to stan-
dard RBNs. Third, the set of nonfrozen and relevant nodes is
dominated by nodes with many inputs. This is due to the fact
that each input has the same probability of surviving the
stochastic process until the end. The average number of in-
puts of a node that has a surviving link is proportional to
�k2N�k�dk, which is dominated by kmax for �� �2,3�. When
a relevant node is perturbed, the attractor is changed with a
large probability. However, when a frozen node is changed,
the attractor changes with a probability that vanishes in the
limit N→
. This explains the findings in �13,12� that attrac-
tors respond sensitively mainly to perturbations of highly
connected nodes. Fourth, our results disagree with the finite-
size arguments in �18�, which predict that the number of
nonfrozen nodes scales as Nini

��−1�/�. This is in our view due to
the fact that an infinite �sustained� perturbation has proper-
ties that are fundamentally different from those of finite per-
turbations, in which case arguments based on finite-size scal-
ing do not work.
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